

Eoulu F1 SiPh Probe Station


Novel Features

- The world's first evolvable and able-to-learn SiPh probe station, for which Eoulu owns 100% intellectual property rights
- Eoulu's patented design for new digital 3.0 system makes the probe station simpler and lighter
- Eoulu's patented design for SiPh AutoCal calibration software, combined with unique optical calibration kits and algorithms, enables precise positioning and rapid calibration
- With Eoulu's thermal system, the F1 SiPh probe station can realize variable temperature test from multi-angle single fiber to fiber array, from vertical coupling to edge coupling
- The world's smallest 12-inch SiPh probe station, only 1m wide, saving the clean room cost, and making it easy to move
- The world's lightest 12-inch SiPh probe station, and the main body only weighs 500 kg, so that the site can easily meet the requirement of bearing capacity

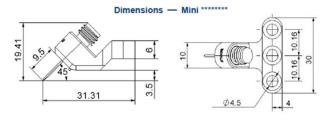
Product Description

- The world's first digital probe station launched by Eoulu
- F1 takes its name from two English words,
 Formula 1, which means to be as fast as F1 car
 Focus 1, which means that all probe station are focused on this one
- Unlike all traditional probe station, it is no longer a probe station, but a probe platform
- From the wafer to the data, there is little manual work involved. You don't have to worry about inaccurate probing
- Featuring a powerful SiPh automation software and hardware integration solution
- Supporting multiple testing applications including O-O, O-E, E-O, and E-E
- futureC provides mass instrument interfaces and applications, making it easy for F1 to test wafers integrated with instruments
- Eoulu's futureD data system and background monitoring technology can be used to easily trace the data of each chip

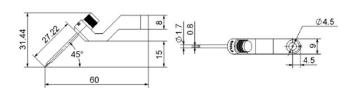
F1 Mechanical Performance

No.	Item	Chuck				
		X-axis	Y-axis	Z-axis	Theta axis	
1	Travel	301 mm	301 mm	20 mm	10°	
2	Maximum positioning accuracy *	≤ 0.05 µm	≤ 0.05 µm	≤ 1 µm	± 0.003°	
3	Speed **	≥ 50 mm/s	≥ 50 mm/s	≥ 20 mm/s	1	
4	Maximum speed	150 mm/s	150 mm/s	35 mm/s	1	
5	Wafer roughness adaptability *	100 μm				
6	Average time of mapping ***	Minimum value	Typical value	Maximum value		
		< 500 ms	<1s	< 3 s ****		
7	XY position locking *****	Minimum value	Typical value	Maximum value		
		0.02 μm	0.038 μm	1.5 µm		
8	Z position locking ******	Minimum value	Typical value	Maximum value		
		0.65 μm	3.5 µm	15 µm		

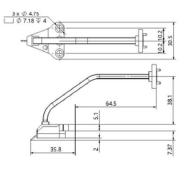
Selection Guide

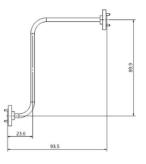

Key Specifications	Single-Signal			Dual-Signal (Differential)		
Key Specifications	LF Series	RF Series	HF Series	LF Series	RF Series	HF Series
Maximum Frequency	50 GHz	110 GHz	110 GHz	67 GHz	110 GHz	110 GHz
Typical Insertion Loss @ 40 GHz **						
GSG,150 µm Pitch,Standard	- 0.50 dB	- 0.62 dB	- 0.57 dB	- 0.80 dB	- 0.80 dB	- 0.80 dB
GSGSG,150 µm Pitch,Standard						
Typical Return Loss @ 40 GHz **						
GSG,150 µm Pitch,Standard	- 20.50 dB	- 17.80 dB	- 18.54 dB	- 13.00 dB	- 13.00 dB	- 13.00 dB
GSGSG,150 µm Pitch,Standard						
Typical Contact Resistance ***	< 10 mΩ	< 10 mΩ	< 10 mΩ	< 10 mΩ	< 10 mΩ	< 10 mΩ
Tip Configuration	GSG, GS,SG	GSG, GS,SG	GSG, GS,SG	GSGSG, GSSG	GSGSG, GSSG	GSGSG, GSSG
Probe Pitch *****	50 μm ~ 1250 μm	50 μm ~ 1250 μm	50 μm ~ 1250 μm	50 μm ~ 1250 μm	50 μm ~ 1250 μm	50 μm ~ 1250 μm
Probe Pilch	(25 µm step)	(25 µm step)	(25 µm step)	(25 µm step)	(25 µm step)	(25 µm step)
Typical Lifetime ******	> 1,000,000	> 1,000,000	> 1,000,000	> 1,000,000	> 1,000,000	> 1,000,000
Maximum Temperature	200°C	200°C	200°C	200°C	200°C	200°C
Minimum Pad Size	70 × 70 μm	30 × 30 μm	30 × 30 µm	70 × 70 μm	30 × 30 μm	30 × 30 μm
	Suitable for uneven wafer	Ultra Low Contact	Ultra low Contact	Suitable for uneven wafer	Ultra low Contact	Ultra low Contact
	Stable testing	Resistance	Resistance	Stable testing	Resistance	Resistance
Features	High repeatability	Small contact marks	Small contact marks	High repeatability	Small contact marks	 Small contact marks
	Long lifetime	Stable testing	Stable testing	Long lifetime	Stable testing	Stable testing
	Fast delivery	High repeatability	High repeatability	Fast delivery	High repeatability	High repeatability
December define ******	PCB Board Testing	Filter Testing	Device Modeling Testing	PCB Board Testing	Filter Testing	Device Modeling Testing
Recommendation *******	Mass Production Testing		Characterization Testing	Mass Production		Characterization Testing

110 GHz Single-Signal : RF110 Series


Electrical Specifications					
1	Frequency Range	DC ~ 110 GHz			
2	Insertion Loss **	Max	Typical	Min	
	(GSG,150 µm Pitch,Standard)	- 0.96 dB	- 1.13 dB	- 1.37 dB	
3	Return Loss **	Max	Typical	Min	
	(GSG,150 µm Pitch,Standard)	- 11.60 dB	- 16.86 dB	- 19.24 dB	
4	Characteristic Impedance	50 Ω			
5	Contact Resistance ***	< 10 mΩ			
6	Maximum DC Current	5 A			
7	Maximum DC Voltage	200 V			

Mechanical Specifications				
1	Tip Configuration	GSG		
2	Probe Pitch *****	50 μm ~ 150 μm (25 μm step)		
3	Connector 1.0 mm (female)			
4	Probe Tip Material	Copper Alloy		
5	Typical Lifetime ******	> 1,000,000		
6	Maximum Temperature	200°C		
7	Minimum Pad Size	30 × 30 μm		
8	Probe Shape	Typical / Mini / Slim		
9	Recommended Cable	C110 Series Cables		


Dimensions — Slim ********



325 GHz Waveguide Probes

Electrical Specifications					
1	Frequency Range	220 ~ 325 GHz			
2	Insertion Loss	T Model	S Model		
	(GSG,150 µm Pitch)	- 6.5 dB	- 5.0 dB		
3	Return Loss	T Model	S Model		
Ľ	(GSG,150 µm Pitch)	- 13.0 dB	- 12.0 dB		
4	Characteristic Impedance	50 Ω			
5	Contact Resistance *	< 10 mΩ			
6	Maximum DC Current	500 mA			

Dimensions — T Model ****

